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Abstract—The power flow solution of a three-phase network 

can be more easily computed if the power system is assumed as 

having a symmetrical structure with balanced loads. In this way, 

only the single-phase positive sequence circuit can be considered 

since it is wholly representative of the balanced operation of the 

electrical system. However, technical literature has investigated 

general methods to compute power flow solution in 

asymmetrical/unbalanced situations, since these situations may 

occur in real networks, especially in the distribution ones. Thus, 

in this paper the authors provide an iterative algorithm (easily 

implementable into common PCs) for the study of 

asymmetrical-structure networks and with unbalanced load 

scenarios. This calculation approach is different from the 

classical numerical ones (e.g. Newton-Raphson and derived) and 

it is characterized by a high solution accuracy and low CPU 

time, even in ill-conditioned cases. Eventually, real case studies 

showing the existence of negative, zero sequence currents, and 

voltages in balanced-load and asymmetrical networks are 

presented. 

 
Index Terms—Asymmetrical Three-Phase Network, 

Multiconductor System, Three-Phase Power Flow, Unbalanced 

Loads. 

NOMENCLATURE 

Symbol Meaning 

Y complex admittance matrix 

Z complex impedance matrix 

v complex voltage vector 

i complex current vector 

v complex voltage 

v
 

constrained voltage magnitude  

z complex impedance 

y complex admittance  

S complex power 

p active power 

q reactive power 

T Fortescue matrix 

R incident matrix 

U identity matrix 

 elementary cell length of a line 

nc number of elementary cells per line 

d line length 

Δi  current injection vector 

α complex operator
j2 3e /=  

 

Subscripts and superscripts 

a slack bus 

x generator buses b÷g 

G generator buses a÷g 

 
1 Died on 28/06/2014.  

L load buses h÷ 

Sh shunt elements 

tr transformer 

f phase component frame of reference 

s sequence component frame of reference 

p positive sequence 

n negative sequence 

0 zero sequence or initial estimate ( ) 

eq or equiv equivalent 

P primitive (matrix) 

1st first category element 

2nd second category element 

base system base parameter  

1,2, … k first, second, …, k-th iteration 

1,2,3 indices for: 

asynchronous user sets (1), 

static user sets (2), 

reactive power compensation devices (3) 

* complex conjugate 

-1 matrix inversion 

t transposition 

 

Abbreviations 

HV High-Voltage 

EHV Extra High-Voltage 

GIL Gas Insulated transmission Line 

OHL OverHead Line 

ACSR Aluminum Conductor Steel Reinforced 

p.u. per unit 

() The symbol is used for more than one meaning, as it is specified. 

I. INTRODUCTION 

HIS paper is an updated translation of an Italian paper 

published in 2000 [1].  

The power flow problem in a three-phase network is 

usually studied by means of the corresponding single-phase 

equivalent circuit.  

However, the power quality in an electrical network can be 

studied more precisely if the considered three-phase system 

is thought as a multiconductor one, considering each phase 

coupled with other conductors (e.g. ground wires of overhead 

lines and metallic screens of insulated cables), and 

considering the unavoidable asymmetrical structure of the 

phase conductors.  

Typical asymmetrical multiconductor components are the 

high and extra-high voltage overhead lines with one or more 
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ground wires, because of the absence of symmetrical 

configuration of their phase conductors (often not 

transposed).  

On the other hand, both single-core cable systems with a 

possible earth continuity conductor and long GILs (Gas 

Insulated transmission Lines) are asymmetrical systems.  

In particular, the latter have been deeply investigated in the 

research field of electrical energy transmission since they are 

characterized by high performances and low electromagnetic 

and environmental impact.  

Power flow solution in multiconductor systems can be a 

useful tool to check the presence of negative and zero 

sequence voltages and currents, even if generators, 

transformers and three-phase loads are considered 

structurally symmetric.  

In this way, it is possible not only to assess the level of the 

electric power quality as seen at the final consumers, but also 

to check the presence of distortion in the system introduced 

by the network elements (especially by the generators) and 

involving measurement and protection devices. Moreover, 

power flow solution of such a system allows computing 50 

Hz-magnetic fields in the proximity of the electrical lines, in 

order to make estimations on the environmental impact. 

As shown in a subsequent paper, a multiconductor model 

can be a useful tool in order to study faulty regimes caused 

by simultaneous and multiple faults (asymmetrical short 

circuits and phase interruptions) in a simple and clear manner. 

In the technical literature, a lot of publications about power 

flow solutions have been presented [2-4], but the most 

established calculation methods are based on Newton-

Raphson [5-9] and derived ones [10-13]. In particular, very 

interesting contributions deal with the modelling of the 

elements constituting the three-phase network [14].  

In this paper, power flow solution is achieved by means of 

a unique complex admittance matrix including all network 

elements, generators (slack one excluded) and loads. Then, 

the solution is obtained through an iterative pattern involving 

matrix partitioning in complex form, without the need of 

real/imaginary decomposition. In this way, the procedure can 

be thought as a generalization of the algorithm presented in 

[15], which is valid only for symmetrical systems.  

Moreover, the method presented in this paper is easily self-

implementable on common PCs and is characterized by good 

convergence properties, even in ill-conditioned cases (very 

long lines, lines with high r/x ratio and near to the voltage 

collapse).  

Finally, the CPU time of this procedure is always shorter 

or comparable with the ones of other calculation methods and 

the solutions are characterized by a very high accuracy. 

II. ESSENTIALS OF THE METHOD 

The method is based on the formal possibility to build 

steady-state models for generators and loads of the power 

system, by means of (33) admittance matrices (phase 

component admittance matrices).  

Each of these matrices represent the complex power 

absorptions/injections whenever the corresponding elements 

are subjected to a three-phase set of voltages.  

Thus, once it is excited by a three-phase slack voltage, the 

system exchanges power with the shunt elements, which 

model both generators and loads (loads absorb complex 

power, generators inject it).  

This approach characterizes the originality of the proposed 

method.  

The entire system is initially set (see Sect. 5.2) to have an 

initial solution near to the real steady-state one.  

Subsequently, with an iterative approach, the sensitiveness 

of the system is analysed, and solution adjustments are 

opportunely executed at each iteration until convergence.  

In order to study the steady-state solution of such a system, 

three-phase models of each network device must be 

considered. Eventually, mutual couplings among phases must 

be taken into consideration [16].  

These power network models can be divided into two 

categories: 

1st) One-section elements, which are connected by 

only one section into the network (e.g. generators, 

loads, reactive shunts and filters); 

2nd) Two-section elements, which are the network 

devices connected between two sections. 

Each three-phase network element, which belongs to the 

first category or to the second one, is characterized by an 

admittance matrix which relates the currents and the voltages 

of each phase: in this way, it is quite easy to build the nodal 

admittance matrix which models the entire network.  

Fig. 1 shows the basic idea of the phase component 

modelling: for a generic 1st) category element connected to 

the i-th section, currents and voltages column vectors (31) 

are related through a phase component admittance matrix 

(33)
1st

iY ; whereas for a generic 2nd) category element 

connected between the i-th and j-th sections, current and 

voltage column vectors (31) are related through a phase 

component admittance matrix (66) 
2nd

ijY .  

For example, Appendix A.2 shows that a three-phase 

overhead line including two ground wires is wholly described 

by using a (1010) matrix.  

However, this (1010) matrix can be reduced to a (66) 

phase component admittance matrix 
2nd

ijY , which considers 

(to power flow purposes) even the effects due to the presence 

of the two earthed ground wires. The matrices
1st

iY and
2nd

ijY

are not sparse, since they include the mutual admittances due 

to the phase couplings.  

However, for the study of asymmetrical three-phase 

networks, it is necessary to make a phase component 

modelling not only for asymmetrical devices (OHL lines), but 

also for structurally symmetrical devices (e.g. power 

transformers and synchronous generators).  

In order to study a three-phase electrical system, the 

considered network can be splitted into two blocks as shown 

in Fig. 2: the passive network block N with all its n sections 

a, which includes the set of distribution and 

interconnection elements, and the shunt element block Sh, 

which includes both loads L and generators G, excluding the 

slack generator (so Ya0), since it must be considered as the 

external element exciting the whole system. 
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Fig. 1.  Phase-modelling representation of the 1st) and the 2nd) category 

network elements. 

The first block is represented by a (3n3n) phase 

component admittance matrix YN, whereas the second one is 

represented by a same-dimension admittance matrix YSh. In 

the paper, all the elements of the abovementioned matrices 

are considered in p.u. 

For the N block, according to voltage and current sign 

conventions shown in Fig. 2, the following equation can be 

written: 

 iN =YN v (1) 

where: 

tt t t t
a

t

,=i i i i i iNN N N NN .... .... .... ....b g h  (2) 

t t t t t
a

t

.=v v v v v v.... .... .... ....b g h  (3) 

Differently for the Sh block, the following equation can be 

written: 

 iSh=YShv (4) 

where: 

t t t t
t

.... .... .... ....=i 0 i i i iSh S S S Sb g h  

and YSh is the (3n3n) diagonal block matrix, in which every 

diagonal block element is a (33) matrix representing a 

generator or a load (see Fig. 3). 

 

va 

ia iaN 

Slack bus  h g b 

Y 

Sh 

Yh Yg 

YN 

Ya0 Yb 

(Passive network N) 

v 

iN 

iS 

 

Fig. 2.  Decomposition of a generic three-phase system into the passive 

network block N and the shunt block element Sh.  
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Fig. 3.  Partitioned YSh matrix, holding the information about all network 

generators (except slack one) and loads. 

 

Thus, once established YN (see § 4.1) and YSh, the steady-

state solution of the system in Fig. 2 due to the application of 

va must satisfy the following matrix equation:  

 i =Y v (5) 

which derives from the side-by-side summation of (1) and 

(4). Thus, the matrix Y is YN+YSh and 
t

t

a=i i 0 0 0 0 0 0 0 0 is the column vector 

representing the net entering currents into the n sections a 

of the system.  
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Fig. 4.  Block partitioning of the matrix equation i=Y v. 

 

By splitting Y, as shown in Fig. 4, it follows that: 

 iG=YGG vG + YGL vL (6) 

 0=YLG vG + YLL vL. (7) 

 

From (7), the expression of vL is: 

 
=

-1
L GLL LG

v vY Y-                (8) 

and its introduction in (6) yields: 

 , 
 

= =
-1

G GG GL LL LG GeqG Gi Y - Y Y Y v Y v  (9) 

where the matrix YLL is generally nonsingular. Equation (9) 

can be represented as in Fig. 5. 
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Fig. 5.  Block partitioning of the matrix equation iG=YGeq vG. 

It is worth noting that YGeq characterizes the behaviour of 

the whole system as seen at the generator sections. In fact, 

YGeq is the matrix that summarizes the interaction among 

network, generators, and loads. Once introduced the 

partitions shown in Fig. 5 and by observing that the subvector 

ix has all the components equal to zero, it results: 

 0=C va+D vx. (10) 

So, the voltage generator vector vx (regarding the set of 

three-phase voltages in sections b.....g) is given by:  

 vx= -D-1C va, (11) 

where the D square-matrix is generally nonsingular. In this 

way, all the elements of the vector vG are known, so the 

elements of the vector vL can be found with (8), whereas 

vector ia can be found with the following:  

 = +a ai Av Bvx

, 
(12) 

which likewise derives from the matrix partitioning shown in 

Fig. 5. Therefore, once established YN (the matrix modelling 

the passive network) and YSh (the matrix modelling both the 

generators and loads) the "excitation" due to the (31) slack 

voltage vector va define the steady-state solution of the whole 

system (represented in Fig. 2), in which loads and generators 

absorb and inject their own complex power respectively.  

III. PHASE COMPONENT MODELLING OF THE SYNCHRONOUS 

GENERATOR 

Since a cylindrical rotor synchronous machine can be 

considered a high-symmetry device, its steady-state regime 

can be easily studied by means of the sequence networks 

represented in Fig. 6. In particular, for the positive sequence 

(where the mechanical power conversion to the electrical 

power happens) which injects the complex power 

p pp
S p jq= + , the following relations can be written: 

 p

pp p p p

p

p p

p p

S

v

*

*

* e

2 2e

yS v i ; i v ;

qp
y j .

v v

− = − ==

= − +

 
(13) 

Once established the complex power pS  injected and the 

positive-sequence magnitude of the voltage p
v  the model of 

the machine (as seen at its network terminals and represented 

in Fig. 6a)) is completely determined. This representation is 

also useful to model the salient pole rotor synchronous 

generator at the positive sequence (supposing it as a 

symmetrical structure). 

 

see (13) 

a) 
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e e
z 1 y=  
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Sp Sp 

vo 
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vn 

vp 

 

Fig. 6.  Sequence component networks of the steady-state generators.  

According to the method of the symmetrical components, 

the following sequence component diagonal matrix suitably 

represents the generator model: 

      

 

YgS = 

y0 

ye 

yn 

               

where o e no e n
y 1 z y 1 z y 1 z; ;= = = . Since a generator is 

a symmetrical device, the knowledge of the phase values can 

be found by means of the Fortescue transformations (see 

Appendix A.1.). In this way, it is possible to find the (33) 

phase component admittance matrix Yg: 

 Yg=T-1 YgS T (14) 

For the slack bus in § 5.1 a specific model is presented. 

IV. YN AND YSH CONSTRUCTION 

Once obtained the phase component matrices for each 

network component with the methods and the algorithms 

described in sections A.2. and A.3., the (3n3n) YN matrix 

must be built coherently with the topology of the network. 

Moreover, the (3n3n) YSh block diagonal matrix must be 

built, and it describes the phase-behaviours of the generators 

and loads. 

4.1 The YN building by means of YP and R matrices 

Similarly to the single-phase study, in order to make 

automatic the construction of YN, it can be useful to use a 

primitive matrix YP and an incident matrix R, which keeps 

the information about the topology of the network.  

For the simple system represented in Fig. 7 (in which , , 

 represent three electrical lines) the diagram in Fig. 8 can be 

built (excluding the generators and the loads, according to 

Fig. 2). In this diagram the matrices , , , ,  characterize 

all the 2nd) category elements forming the network N and they 

are characterized by the currents
 

ai i  "injected" into their 

terminals. 
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Fig. 7.  Simple system with five sections and three derived elements. 
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Fig. 8.  Forming the matrices of the passive network N of Fig. 7. 

Fig. 9 shows the matrix relation between voltage and 

current vectors of the two ends of each component. In this 

way, a unique matrix equation between nodal voltages and 

currents can be written: 

 iP=YP vP (15) 

where the block-diagonal matrix YP is called primitive matrix 

of the network. 

 

iP YP 
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Fig. 9.  Matrix structure of (15) for the Network of Fig. 7. 

Fig. 10 shows that vector vP can be built by means of the 

incidence matrix R starting from the vector v (which is 

composed of the voltages of sections a). The matrix is built 

from the composition of U, which are the (33) the identity 

matrices according to the following equation: 

 vP =R v (16) 

It is worth noting in Fig. 11 that iN (whose components are 

the currents iaNiN entering the sections a, according to 

Fig. 8) can be computed as  

 iN=Rt iP (17) 

where Rt is the transpose matrix of R. By considering (15) 

and by combining (16) with (17), it follows:  

 iN =Rt  YP R v   (18) 

thus, YN matrix of the network N of Fig. 8 (excluded 

generators and the load ) is given by:  

 YN= Rt YP R   (19) 

Equation (19) is general and easily self-implementable, 

when the data of the networks are known.  
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Fig. 10.  Matrix from of (16) for the system represented in Fig. 7. 
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Fig. 11.  Matrix from of (17) for the system represented in Fig. 7. 

According to the present example, YN is a block-sparse 

matrix, where the not-null submatrices are grey-highlighted 

in Fig. 12. Finally, by combining (15) and (16), it also follows 

that: 
 

iP = YP R v 
(19b) 

 

3 
2 
1 

2 1 3 

 

 

k 

h 

b 

a 

YN 

k h b a 

= 

 
Fig. 12.  Matrix YN of the system in Fig. 7. 

V. POWER FLOW SOLUTION IN ASYMMETRICAL SYSTEMS 

5.1 The asymmetrical system formulation 

Firstly, it is convenient to precise that the constrained 

quantities necessary to calculate the power flow solution, for 

an asymmetrical system, are the following: 

 

 qjp...qjp hh ++  

(20) 

: positive-sequence voltage magnitudes of 
the generator sections b ... g; 

: positive-sequence voltage phasor of the 
slack-bus section a; 

 

: complex power (finite or null) absorbed 

by the load sections h... for the nominal 

positive sequence voltage magnitude. 

 

: positive-sequence active power injected 
into the generator sections b ... g; 

pb pgv . . .v  

p av  

pb pgp . . . p  
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Once established the constrained values (20) at the 

network buses, it is necessary to make the following 

specifications: 

i) The slack bus generator (see Fig. 13) in section a, is 

supposed to be a finite-power generator; however, it must 

always guarantee the presence of a three-phase positive 

sequence voltage at its terminals. This positive sequence 

voltage is represented by means of the phasor v pa , which is 

a reference having a zero angle. Since the network is 

characterized by some asymmetrical elements (e.g. overhead 

lines) and sometimes by unbalanced loads, it is predictable 

that the slack generator is characterized by the presence of 

both negative and zero sequence voltages and currents 

(whenever a possible downstream step-up transformer allows 

the circulation of zero-sequence currents).  

 

Negative-sequence 

Positive-sequence 

Zero-sequence 

oaz  ioa 

voa=-zoa ioa 

Scheduled phasor 

ipa 

vpa 

ina 

vna=-zna ina 

paz  

naz  

 
 

Fig. 13.  Sequence component networks of the slack generator. 

According to the symmetrical component networks of Fig. 

13 (with the same current conventions of Fig. 2) the phase 

component elements of the vector va can be expressed by 

means of T-1 transformation (see Appendix A.1.):

 

pav  

vaS 

va= 

-znaina 

-zoaioa 

2  

 2 1 

1 

1 

1 1 

T-1 

(21) 

 

which is:  

 

T-1 T = - va 

ia3 

ia2 

ia1 

ia 

0 

0 

0 

vpa 

zoa 

Zna 

(22) 

 

where T ia=iaS. Equation (22) is introduced in the adopted 

iterative pattern.  

ii) For each iteration, the phase component vector vg of a 

generic generator g can be decomposed into the components

ov v vg pg ng, , : the generator model (v. iii) must be adjusted 

until the magnitude of the positive sequence pv g  reaches the 

constrained value pv g . 

iii) Since for the generator g the active power ppg  and the 

magnitude of the voltage pv g  are constrained, its solution 

adjustments consist of refreshing, according to (13), the 

imaginary part of 
e

y  (i.e. 
2

ppq v ), where qp is determined in 

each iteration according to the sensitiveness of the system, as 

it will be explained in the following. 

iiii) Appendix A.4. shows that a three-phase load in parallel 

with a shunt for reactive power compensation can be correctly 

represented by the phase admittance matrix Y according to 

the participation of induction motors and static loads, once 

the complex power due to the application of a positive-

sequence voltage is supposed. This fact corresponds to 

establish the block YLL as the nominal one regardless of the 

actual voltage in the loads. Moreover, the voltages are 

generally not so different from the nominal voltages. 

Anyway, the iterative adjustment of the phase admittance 

matrices is possible.  

5.2. Initialization of the iterative procedure 

It is useful to list the procedure steps as follows: 

1) Building the matrix YN according to Sect. 4.1. 

2) Building the sub-matrices Yh...Y related to loads, 

according to Appendix A.4., that remain constant during the 

entire procedure (nominal matrices). 

3) Building the sub-matrices ...
(1) (1)

Y Yb g  related to the 

generators bg according to (13) and (14): as an example, for 

a generic generator g, 
1

e
y

( )

g
 is calculated firstly, according to 

(13), with the following: 

 

v v

pg pg,0(1)

2 2eg
pg pg

p q
y j= − +  (23) 

where pp g  is the positive sequence active power (v. iii), pv g

is the constrained positive sequence magnitude and pq g,0  is 

the initial approximation of the reactive power generated in 

order to keep the voltage vpg to the constrained level pv g . 

These initial approximations of pq g,0  can be easily computed 

according to the procedure shown in Fig.14. Supposing that 

generators (including the slack one) ag give the phase 

component vectors:  

 

2 2

1 1

v vpa pg... 

 

   
   

= =
   
      

a,0 g,0
v v  (24) 

representing positive sequence sets, all in phase each other; 

the matrix YSh,0  is built by considering only the submatrices 

concerning loads and by setting the generators submatrices 

...  
a,0

Y Y Y 0
b,0 g,0

. 
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Fig. 14.  Diagram representing the calculation of the initial reactive powers

q ...q
b,0 g,0

. 
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By splitting the following relation similarly to Fig. 4: 

 

 

i=Y0 v   where  Y0=YN+ YSh,0  
(25) 

 

and as for (6)(9), the following matrix relation can be 

obtained: 

 

 

= vG,0 iG,0 ix,0 

ia 

C0 D0 

B0 A0 

YGeq,0 =YGG,0 - YGL 
-1

LL,0Y YLG 

vx,0 

va,0 
(26) 

 

where the vector x,0i 0 representing the phase currents of the 

generators bg result: 

 

00= +
a,0

i C v D vx,0 x,0  (27) 

Thus, the Fortescue analysis of v
x,0  and i x,0  allows 

computing the initial (approximated) reactive power for each 

generator dq g,0  to be introduced in (23). 

 

4) Building Y(1)=YN+
(1)

YSh . 

 

5) Partitioning i(1)=Y(1)v(1) according to Fig. 4. 

 

6) Building
(1)

GeqY according to (9) and its partitioning 

according to Fig. 15; matrix A1 (33); B1 (33(n-1)); C1 (3(n-

1)3); D1 (3(n-1)3(n-1)) are obtained. 

 

7) First iteration calculation of the phase vector
(1)

v
x  

 

=
(1)

v
x -

−1 (1)

1 1 a
D C v  

(28) 

in accordance with (11) and calculation of 
(1)

a
v  with (22), 

where ia0, due to the initialization. 

 
 

ia3 

vb 

vg 

B1 

(1)

GeqY  

A1 


(1)

i 0x

 

v(1)
x

 

ia ia2 

ia1 

ib3 

ib ib2 

ib1 

ig3 

= = 

ig ig2 

ig1 

.... 

.... 

.... 

.... 

D1 C1 

va3 

va2 
va1 

vb3 

vb2 
vb1 

vg3 
vg2 

vg1 
.... 

.... 

.... 

va 

 

Fig.15.  Matrix partitioning of the initial guess. 

8) Calculating the first iteration sequence component voltage 

vector 
(1)

S
v

x  of the generators bg according to the following: 

 

(1)

ngv  

(1)

pg
v  

(1)

0gv  

(1)

nbv  

(1)

pbv  

1

0b

( )
v  

... 

... 

T  

T  

(1)
v

x
 

(1)

Sv x  T
x

 

= ... 

... 

... 

... 

... 

(1)

3gv  

(1)

2gv  

(1)

1g
v  

(1)

3bv  

(1)

1bv  

(1)

1bv  

(29) 

 

9) Calculating the first iteration phase current sub-vector 
(1)

ai  

of the slack bus: 

 

= +
(1) (1) (1)

a 1 1a
i A v B v

x  (30) 

5.3. The iterative pattern 

The vector 
(1)

S
v

x  obtained in the first iteration with (29) 

(which analyses the sequence components of the vector 
(1)

v
x ) 

is characterized by the positive sequence components 

1 1
1 1j j1 1v v e v v e

( ) ( )( ) ( )

pb pb pg pg...
 

=  =  , whose magnitudes are 

generally different from the constrained ones: 

1 1v v v v( ) ( )

pb pb pg pg......  . 

By considering the correlation between reactive power and 

voltage magnitudes, reactive power q* established as in 3) 

must be iteratively adjusted by introducing reactive power 

injections 1q( )

pg  that change the admittances 
2

e
y

( )

g
for each 

generator. In particular, the correction varies the value of the 

imaginary part: 

 

1

eg 2

q qp
jy

vv

(1)

pg( ) pg pg

2

ppg g

+ 
+−=  (31) 

Then, a new vector v
(1)

xS  is considered, which is different 

from 
(1)

xSv  (see Fig. 16), since the positive sequence voltage 

magnitudes are set to be equal to the constrained ones, the 

angles of
(1)

xSv are instead kept unchanged. The corresponding 

phase component corrected voltage vector is given by: 

 

−= 
(1) (1)1

S
v T vxx x  

(32) 

 

vng 

vog 

vnb 

vob 

g 

b 

vob 

vpb ej 

vnb 

vog 

vng 

vpg ej g 

b 

vpg ej 

vpb ej 

... 

... 

... 

... 

... 

(1) 

(1) (1) 

(1) 

(1) 

(1) 

(1) 

(1) 

(1) 

(1) 

... 

v
(1)

xs

 

(1)

S
v

x
  

Fig. 16  Vectors v
(1)

xS .and v
(1)

xS  
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Equation (33) clearly highlights that the imposition of this 

vector is related to the injections of phase currents 
(1)

xΔi  (in 

the generator sections bg), which can be easily computed: 

 +
(1) (1) (1)

x 11 a x
Δi =C v D v  (33) 

The application of (34) links the phase component vector
(1)

xΔi  with the sequence component vector
(1)

xSΔi  

 = 
(1) (1)

xS xΔi T Δi
x

.  (34) 

The knowledge of
(1)

xSΔi allows extracting, for a generic 

generator g, the positive sequence 
1

pi
( )

g  injected into the 

section g in the steady-state regime resulting from the 

application of the constrained voltage. The injected current is 

linked to an injected positive-sequence complex power given 

by: 

 11 1 jp j q v e i +  =  
*( )( ) ( )

g pgpg pg p  (35) 

Since, for each generator, there is a close relationship 

between voltage magnitude and reactive power, it is quite 

reasonable to introduce in (31) the reactive correction 1q( )

pg  

obtainable, for each generator, from (35) as shown in Fig. 17. 

Then, 
2

e
y

( )

g
 is used to obtain 

(2)

GY  and its blocks A2, B2, C2, 

D2 used for the second iteration. It is worth noting that the 

rectangular matrixes B2 and C2 exactly correspond to B1 and 

C1. The corrections involving the positive sequence 

susceptances of the generators are connected to the 

"sensitiveness", expressed by (33) and by the corresponding 

ones of the next iterations of the passive network, as seen at 

buses bg.  
 

p j q + (1) (1)

pg pg
 

1 j

p
v e( )

g


 

1

e
y

( )

g
 

2

e
y

( )

g
 

(1) jγ

pg
v e  

( )(1)

pg p ggp
*+ j q + Δqp  

(31) (23) 

 
Fig. 17  Representation of yeg (bg) adjournments. 

Once obtained the convergence in the k-th iteration on the 

positive sequence voltage and active power constrained for 

the generator in (20), the steady-state regime of asymmetrical 

system can be completely computed, by considering "nominal 

models" for the loads, as specified in iiii). The phase-vector 

vL, can be obtained by (8), i.e. 

 −
= −

L

(k) 1 (k)

LL LG G
v Y Y v  

 

The vector iL is given by (36), i.e. 

 
(k)

Li =YL 
(k)

L
v  

(36) 

where YL is the block diagonal matrix of the "nominal 

loads".  

Once obtained the power absorbed by the loads, the 

nominal load models could be in case adjourned to proceed 

with the subsequent iterations. The sequence analysis 

described in (A.1.1) allows knowing the asymmetry level of 

each system section. Regarding the analysis of GIL, please 

refer to [17-21].  

VI.  EXAMPLES OF ASYMMETRICAL POWER FLOW 

CALCULATIONS 

The described algorithm is systematically tested for 

several case studies, aiming at analysing the negative and 

zero sequence presence. A first example deals with the 

distortion introduced by a typical 380 kV overhead line (see 

Fig. 19) 300 km long, which supplies a system of  loads 

summarized by an equivalent matrix (see Fig. A.4.2.) placed 

at the receiving-end, whereas the sending-end is 

characterized by a pure positive sequence voltage. The load 

is conceived as a set composed of an asynchronous, a static 

and a compensation share, as explained in Appendix A.4. 

Table I reports the results by changing the share of the 

asynchronous part over the total load. As shown in Table I, 

the following observations can be drawn:  

• The voltage asymmetry (i.e the ratio between negative-

sequence and positive-sequence voltage) due to the 

presence of the structurally asymmetric line is equal to 

3,12 % (for a purely static load).  

• The level of asymmetry of voltage and current is not equal 

for the purely static load, because of the asymmetry 

introduced by the 132 kV lines.  

• By increasing the share of the asynchronous load, the 

voltage asymmetry decreases up to a percentage equal to 

a 1,66 %, for the case of 60% of asynchronous share. The 

reason of this behaviour is due to the asymmetrical effect 

introduced by the high negative sequence admittance. 

This effect is combined with a high negative-sequence 

current absorption (reaching the percentage of 4,09 % of 

the direct sequence current), which introduces losses in 

asynchronous loads and possible malfunctions at 

equipment and measurement instruments.  

The magnitude of zero sequence voltage seems to be 

independent of the load composition and is always low (about 

2 ‰). Another case study is represented by the system in Fig. 

18, which holds the characteristics of three generators, 

transformers, and loads. Each 380 kV electrical line has got 

the typical Italian structure characterized by three bundled 

conductors (3 subconductors per phase) and two ground wires 

(see Fig. 19); the height of the phase from the ground is about 

42 m; and the two ground wires are ACSR with the diameter 

=14,7 mm; the average span length of the span is 300 m and 

the earth resistance for the towers is 15 . The sections are 

18 (S1S18) with 54 nodes. There are 7 sets of loads absorbing 

altogether a nominal complex power of 2352+j686 

[MW+jMvar] (with a symmetrical voltage of 20 kV). With a 

completely static load, the voltage asymmetry rate in section 

9 is 1,78 %. It is worth noting that this value is computed in 

the 380 kV section, where the effect of the loads lessens, 

because of the 132 kV sub-transmission lines and 

transformers. 
TABLE I  

PERCENTUAL EVALUATION OF THE ASYMMETRY AT THE RECEIVING-END   

LOAD 

COMPOSITION 

STATIC 

LOAD 

30% ASYNCH. 

LOAD SHARE 

60% 

ASYNCH. 
LOAD SHARE 

S=MW+jMvar 555,9+j99,5 556,4+j99,9 556,5+j100 

|vn|/|vp| [%] 3,12 2,01 1,66 

|in|/|ip| [%] 2,99 3,48 4,09 
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S3 

S5 

S2 

S18 S17 S16 S15 S14 S13 S12 

S11 S10 S9 S8 

50  70  

80 km 

30 km 

50  50  70  70  50  50  

50  50  50  90  30 km 

380 kV 

S7 

S6 

S4 

380 MVA 

50 MVA 

15 km 

132 kV 

380 kV 

20 kV 

TR2 

TR3 TR1 

S1 

vp1=1,07 p.u. 

600 MVA cosN=0,9 1400 MVA; cosN=0,9 

zn zp zo 

Plaque impedances in p.u.  

a) Considering the winding star point earthed with an 
external impedance  

b) See models of Fig. 6.a) and Fig. 13; 

c) Impedances as seen from the 380 kV section. 

TR. (c) 

j 0,15 j 2 (b) j 20 (a) gen. 1,2 

Sbase=600 MVA 

vp2=1,07 p.u. 

P3p=500 MW 

1200 MVA; cosN=0,9 

P2p=1000 MW 

vp3=1,07 p.u. 

j 0,14 j 0,14 j 0,13 

j 0,25 j 2 (b) j 20 (a) gen. 3 

Slack bus 1 

 

Fig.  18. Eighteen section system (S1S18). 

 

7,4 m

7,4 m

1

54

3

2

0,85 m

 
Fig. 19.  Tower top of an overhead line 380 kV. 

The actual asymmetrical rate on medium voltage (20 kV) 

is, by considering a load with an asynchronous component, 

less than the one computed in the 380 kV section, reducing to 

0,8 %. Differently, in a completely static case, the asymmetry 

rate is quite the same comparing both the medium and the 

high voltage levels.  

Another interesting aspect is represented by the negative-

sequence currents injected by the synchronous generators; 

these currents together with the positive sequence ones define 

the real state of the electrical machines.  

Table II summarizes the magnitudes of the three sequences 

for the generators, under the hypothesis of completely static 

loads. 

Table III reports the case where all loads have got an 

asynchronous share equal to 60 %. With completely static 

loads (Tab. II), the slack bus injects a negative sequence 

current equal to 4% of the positive current one, whereas for 

generators 2 and 3 these percentages are equal to 3,89 % and 

2,35 %: the lesser percentage for the slack bus is due to the 

higher negative-sequence impedance (see parameters of Fig. 

18). The zero-sequence currents injected by the generators are 

null, because the primary connection of the winding of the 

transformer is delta (dYN11). 

 
TABLE II  

MAGNITUDES OF THE SEQUENCE CURRENTS OF THE GENERATORS UNDER 

THE HYPOTHESIS OF PURE STATIC LOADS (NETWORK OF FIG. 18). 

 SLACK BUS 1 GEN. 2 GEN. 3 

|i0| [p.u.] 0 0 0 

|ip| [p.u.] 0,878 1,650 0,870 

|in| [p.u.] 0,035 0,064 0,021 

 

 

 

TABLE III  

MAGNITUDES OF THE SEQUENCE CURRENTS OF THE GENERATORS UNDER 

THE HYPOTHESIS OF A 60% ASYNCHRONOUS SHARE (NETWORK OF FIG. 

18). 

 SLACK BUS 1 GEN. 2 GEN. 3 

|i0| [p.u.] 0 0 0 

|ip| [p.u.] 0,880 1,650 0,870 

|in| [p.u.] 0,010 0,060 0,010 

 

The high asynchronous share (60% of the total load) 

involves a reduction of the asymmetry rate in the voltage in 

the load and generators sections, as shown in the first 

example. For instance, in section 9 the asymmetry rate ranges 

from 1,78 % in the case of completely static load to 1,19 % 

in the case of a load with a 60 % of asynchronous motors, 

whereas the asymmetry rate goes from 1,65 % to 2,88 %. 

Table III shows how the current generators give a benefit 

because of the abovementioned considerations. 

VII. CONCLUSIONS 

The abovementioned procedure is implemented in 

MATLAB environment in a common PC. The procedure 

performances are characterized by satisfying CPU times, 

varying from 0,019 s to 0,12 s (with reference to the case 

study with 18 sections and 54 nodes and by adopting an 

Intel(R) Xeon(R) W-2125 CPU @ 4.00 GHz with 64 GB 

RAM) with positive sequence voltage mismatches varying 

from 10-4 to 10-14 p.u. Moreover, the procedure reaches high 

accuracy levels (converging even with a tolerance of 10-14 

p.u.). Even if this level of accuracy is not necessary, this result 

is indicative of the robustness of the algorithm. All these 

results suggest that a matrix approach for the three-phase 

power flow solution can be a powerful tool without resorting 

to numerical analysis techniques as Newton-Raphson and 

derived.  

APPENDIX I. THE FORTESCUE TRANSFORMATION 

In this appendix, the Fortescue transformation [28] is 

briefly described. The phase component vectors (currents and 

voltages) vf, if and the corresponding sequence component 

vectors vS, iS are represented as in the following: 
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if= vf= iS= vS= 

in 

ip 

io 

3
v  

2
v  

1v  

i3 

i2 

i1 

; ; ; 

n
v  

p
v  

o
v  

   . 

 

It is well known that the Fortescue transformation allows 

passing from the symmetrical component frame of reference 

to the phase component one, so: 

 

 vS=T vf,    iS=T if; (A.1.1) 
 

 
vf =T-1vS,   if =T-1 iS;            (A.1.2) 

 

where the transformation matrices are: 

 

 

T= 

1 

1 

1 1 1 

3

1

 

T-1= 

1 

1 

1 1 1 

; ; 

  


 
2

 

2
 



 

 
2  


 

2  
j2 3e / =  

 
 

In particular, for a passive three-phase element with a 

symmetrical structure, the following relations can be written: 

 

 YS vS iS 

in 

= ip 

 yn 

 yp 

 yo io 

vn 

vp 

vo 

 
 

iS=YSvS;  T-1is= T-1 YSvS;   if = (T-1 YS T) vf from which the 

phase component matrix Yf = T-1 YS T is deduced. 

Furthermore, for the complex power in p.u. 

three phase bases S S−= , the following relationships in the two 

different frames of reference can be used:  

s =
t *

ss
v i           

1
s

3
= 

t *

ff
v i . 

APPENDIX II. THE PHASE COMPONENT MODEL OF THE THREE-

PHASE OVERHEAD LINES 

The phase component model of a three-phase overhead 

lines is based on the general methodology used and verified 

by the authors in [22, 23] and well exposed in [24]. In order 

to model the entire line, the conductive wires (the phase 

conductors and the ground wires) are considered parallel 

among them and the earth and are considered as a cascade of 

nc elementary cells of equal length . Thus, by considering 

the classical theory of J.R. Carson [25, 26], the elementary 

cell matrix can be computed. Subsequently, from the essential 

procedure exposed in [17], the computation of the (1010) 

matrix Yin equivalent to the cascade composition of the nc 

total cells can be made (the entire line length is d=nc). 

Obviously, the dimension of Yin is reduced to (88) when a 

unique ground wire is considered, whereas is reduced to 

(66) without the presence of any ground wire. However, it 

is quite logical that considering models of the dimension 

larger than (66) for the composition and the study of the 

entire electrical system implies onerous calculation 

procedures, because of the topological analysis and the 

calculation phase. In this section, the construction of power 

flow synthetic model considering only the three-phase 

conductors, but without neglecting the presence of the two 

ground wires, is shown. By means of the comparisons of 

different calculation results, it can be noted that even under 

the hypothesis of unearthed ground wires (see Fig. A.2.1.) 

(ip5=ip4=ia5=ia4=0), the effects on the phases, along the length 

of the line, are quite the same than the ones produced by the 

earthed ground wires. If the matrix Yin is inverted, the 

obtained relation of Fig. A.2.1, where the currents injected in 

the ground wires are null, the behaviour of the phases 

(included the effects due to the ground wires) is summarised 

by the (66) matrix Zeq obtained by means of the procedure 

of Fig. A.2.2.: the corresponding admittance matrix Yeq 

summarizing the effects of the ground wires on the three 

phases is obtainable by the inverse of Zeq. 

 

5 4 3 2 1 5 4 3 2 1 

Sp Sa 

3 
2 
1 

5 

a 

Zin i v 

vaf 

= 
0 

0 

vpf 

iaf 

0=ip4 
0=ip5 

ipf 

p 

4 
0=ia4 
0=ia5 

iaf 

ipf 

0 

0 

Zin =Yin 

-1 

 
Fig. A.2.1.  Matrix inclusion of the two ground wires of an overhead line. 

 

 

(66) ; Zeq= 
−

=
1

Y Zeq eq  

 
Fig. A.2.2.  Building the phase component admittance matrix Yeq. 

The abovementioned criteria are still valid for other 

typologies (e.g. cables with metallic screens and longitudinal 

earth conductors [27]). 

APPENDIX III. THE PHASE COMPONENT MODEL OF THE 

THREE-PHASE TRANSFORMER 

In general, three-phase transformers are characterized by 

high-symmetry constructions: their typical sequence 

parameters (as short circuit impedances or the 

correspondence admittances in p.u.) allow formulating the 

phase component matrix Ytr by means of the Fortescue 

transformations.  

A description of the procedure is shown in [24]; however, 

in this appendix, it is meaningful to mention a type of three-

phase transformer (see A.3.1.) where the third winding is 

delta connected with the purpose of improving the zero 

sequence behaviour.  

The zero-sequence treatment of the three-winding 

transformer produce a T circuit of three impedances (which 

can be obtained by the measurements between coupled 

windings) and therefore to a matrix Yo between A and a.  
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The composition of the sequence matrix and Fortescue 

transformations bring also in this case to a phase component 

matrix Ytr. The presence of the earthed resistance of the 

substation, that could be easily implemented, can be 

neglected in the zero-sequence models, since it is 

characterized by low values  and since the zero currents are 

very low when power flow studies of HV and EHV networks 

are considered.  

 
 

Yo= 

yoa yom 

yom yoA a 

a A 

 A 

 

Fig. A.3.1.  The matrix Yo of the three-winding transformer. 

APPENDIX IV. THE PHASE COMPONENT MODELLING OF THE 

ELECTRICAL LOADS 

The load  can be conceived as being balanced and 

composed of:  

 

1) a set of users, composed of asynchronous motors (loaded 

at their nominal power) absorbing a complex power equal to 

p1+jq1 in correspondence of the nominal positive sequence 

voltage; 

 

2) a set of static loads absorbing p2+jq2, in correspondence of 

the nominal positive sequence voltage; 

 

3) a reactive power compensation by means of a capacitor 

bank, absorbing a negative reactive power q3= qc, in 

correspondence of the nominal positive sequence voltage.  

Thus, the positive sequence nominal admittances (under a 

voltage of 1 p.u.) can be easily computed by means of the 

systematic use of the following: 

 

 
2

p jq
y

1

−
= [p.u.].  

For each set of loads, excluding the absorption of the zero-

sequence current, the admittance matrices are the following: 

 

 




j
ey

1
 

1
y  

0 

2
y  

2
y  

0 

3
y  

3
y  

0 

(2)

SY  
(1)

SY  
(3)

SY  

; ; ; 

 

 

where for the static loads the positive and negative 

admittances are exactly the same; and for the set of 

asynchronous motors the negative sequence admittance (slip 

~ 2) is set equal to y1ej, in which typically  = 57 and  

=-60°-75°. 

The phase component matrix Y characterizing the entire 

balanced load  is therefore: 

 −
= + +

(1) (2) (3)1

S S S
Y T (Y Y Y )T .  

Moreover, the introduction of an additional set of 

unbalanced loads would involve, as shown in Fig. A.4.1., the 

phase component matrix Ysq that can be built and summed to 

the matrix Y.  

 1 

3 

2 

1 

3 2 

2 3 

1 

y


 

y


 y


 

 y 

+y 

y 

+y 

- y - y 

- y - y 

- y - y 
 y 

+y 

Ysq = 

 

Fig. A.4.1.  Modelling of an unbalanced load. 

Finally, in many cases (see Fig. 18) an equivalent load 

scheme to the 380 kV section  can be usefully built, since the 

entire network as seen at section  can be described by means 

of an equivalent matrix Yequiv (see Fig.A.4.2.). 

 

 

 

380 kV 

20 kV Yequiv 
 

1 

 

132 kV OHL lines  

 

Fig. A.4.2.  Equivalent matrix of the distribution network. 
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